Übungsaufgaben – Kettenregel, Produktregel, Quotientenregel

1. Entscheiden Sie, ob die Aussagen wahr (w) oder falsch (f) sind.

Bei der Verkettung von zwei Funktionen ist die Reihenfolge ohne Bedeutung.	□w	□f
In der Verkettung $(u \circ v)(x) = u(v(x))$ ist v innere und u äußere Funktion.	□w	☐ f
Eine Funktion kann nie mit sich selbst verkettet werden.	□w	□f
Eine Verkettung von mehr als zwei Funktionen ist nicht möglich.	□ w	□f

2. Bestimmen Sie die erste Ableitung.

a)
$$f(x) = \sin x^2$$

b)
$$g(x) = \sin^2 x$$

c)
$$h(x) = (4x^2 + x - 2)^4$$

$$d) i(b) = (bc + dbb)^e$$

e)
$$k(x) = (x^2 - 3x + 4) \cdot (\sin x + 5x^2)$$
 f) $m(x) = \frac{\sin x}{\cos x}$

$$m(x) = \frac{\sin x}{\cos x}$$

3. Bestimmen Sie die erste Ableitung.

a)
$$f(x) = \sqrt{\cos(3x^2)}$$

b)
$$g(x) = \sqrt{\sin x \cdot \cos x}$$

c)
$$h(x) = a(x) \cdot b(x) \cdot c(x) \cdot d(x)$$

$$h(x) = a(x) \cdot b(x) \cdot c(x) \cdot d(x)$$
 d) $i(x) = \frac{a(x) \cdot b(x)}{c(x) \cdot d(x)}$

- Gegeben ist die Funktion f mit $f(x) = (2x + 1)^3$. 4.
 - Ermitteln Sie die Steigung des Graphen von f an der Stelle x = -2. a)
 - Bestimmen Sie alle Stellen x, an der der Graph eine waagrechte Tangente besitzt. b)
- Ermitteln Sie für die Funktion f mit $f(x) = \frac{x+2}{x^2-3}$ die Schnittpunkte mit den Koordinatenachsen 5. sowie die Extrempunkte.

einige Lösungen:

 $f'(x) = 2x \cdot \cos x^2; \ g'(x) = 2 \cdot \sin x \cdot \cos x; \ h'(x) = 4 \cdot (4x^2 + x - 2)^3 \cdot (8x + 1);$ $i'(b) = e \cdot (bc + dbb)^{e-1} \cdot (c + 2db); k'(x) = (2x - 3) \cdot (\sin x + 5x^2) + (x^2 - 3x + 4) \cdot (\cos x + 10x); m'(x) = \frac{1}{\cos^2 x}$

 $f'(x) = -\frac{3x \cdot \sin(3x^2)}{\sqrt{\cos(3x^2)}}; g'(x) = \frac{\cos^2 x - \frac{1}{2}}{\sqrt{\sin x \cdot \cos x}}$ m = 54, x = -0,5

 $S_x(-2|0); S_y(0|-0,\overline{6}); H(-1|-0,5); T(-3|-0,1\overline{6})$